
A METHODOLOGY FOR INTEGRATING
TOOLS

IN A WEB-BASED ENVIRONMENT

THESIS

Musa Serdar ARSLAN, 1st Lt. TUAF

AFTT/GCE/ENG/OOJ-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DEEÖ ^SiUütf mZPBCTED 4

The views expressed in this thesis are those of the author and do not reflect the of-

ficial policy or position of the Department of Defense, the U. S. Government, or the Gov-

ernment of the Turkish Republic.

AFIT/GCE/ENG/OOJ-01

A METHODOLOGY FOR INTEGRATING TOOLS

IN A WEB-BASED ENVIRONMENT

THESIS

Presented to the Faculty of the Graduate School of Engineering and Management

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of Master of Science in Computer Engineering

Musa Serdar ARSLAN, B.S. Computer Engineering

1st Lt. TUAF

April 2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFrr/GCE/ENG/OOJ-01

A METHODOLOGY FOR INTEGRATING TOOLS

IN A WEB-BASED ENVIRONMENT

Musa Serdar ARSLAN, B.S. Computer Engineering

1st Lt. TUAF

Approved:

Thomas C. Hartrum, Ph.D. Date
(Chairman)

Henry B. Ärtoczny, Ph.D. * ^ Date Henry B. Fbtoczny, Ph.D
Member

ZctjerZpod
Michael L\ Talbert, Major, USAF, Ph.D. "Date
Member

Acknowledgements

AFIT education was a very challenging experience for me. We have always had

to work very hard. I won't be able to thank my family enough for always supporting me.

I wouldn't be able to overcome this challenging education period without the support of

my family and my friends. My wife Funda has always been supporting me, and my little

daughter Melike has always been there to take me away from homework and projects for

a little time. I also want to thank my friends who always have been supporting and help-

ing me. I would like to thank my thesis advisor, Dr. Hartrum, for always encouraging and

guiding me. He helped me to improve my writing skills in English and he always pushed

me forward to make it better. I also want to thank my thesis committee members Dr. Po-

toczny and Maj. Talbert for always helping me when I needed their help and for their

valuable comments on my thesis. I also want to thank my classmates who have been good

friends and who showed good examples of American culture. I also want to thank the

Turkish Air Forces who gave me this opportunity and all the Turkish citizens who sup-

port me by paying their taxes. Thank you all.

Musa Serdar ARSLAN

TABLE OF CONTENTS

Acknowledgements i

Abstract viii

1. Introduction 1

1.1. Background 1

1.2. Problem 2

1.3. Summary of Prior Effort 5

1.4. Scope 6

1.5. Approach 6

1.6. Assumptions 7

1.7. Thesis Overview 7

2. Web-Based Technologies 9

2.1. Server-Side Technologies 11

2.1.1. CGI (Common Gateway Interface) 11

2.1.2. Java Servlets 12

2.1.3. Active Server Pages (ASP) 13

2.1.4. Java Server Pages (JSP) 14

2.2. Client-Side Technologies 14

2.2.1. Java Applets 15

2.2.2. ActiveX Controls 17

ii

2.2.3. Dynamic HTML (DHTML) 18

2.3. Database Connectivity 18

2.3.1. JDBC 18

2.3.2. ODBC 22

2.4. Previous Work 24

2.5. Summary 28

3. Web-based Integration Methodology 29

3.1. Overview 29

3.2. Analysis Of The Tools 30

3.3. Integration Methods 35

3.4. Choosing An Integration Method 38

3.5. Analysis Of The Target Platform 42

3.6. Design of the System 47

3.7. Summary 53

4. Application of Methodology 54

4.1. Analysis Of The Tools 54

4.2. Choice Of Integration Method 59

4.3. Analysis Of The Target Platform ..60

4.4. System Design 62

4.5. Summary70

iii

5. Results and Conclusion 71

5.1. Results 71

5.2. Conclusions 73

5.3. Recommendations For Future Work 73

5.3.1. Recommendations For The Methodology 74

5.3.2. Recommendations For The Course Registration System 75

Appendix A. Table Definitions 76

Bibliography 78

Vita 81

IV

LIST OF FIGURES

Figure 1.1: Current course registration process 4

Figure 2.1: Web-based applications 10

Figure 2.2: The ODBC Architecture 23

Figure 3.1: Interaction of the user with the tools before integration ..35

Figure 3.2: The first integration paradigm ..36

Figure 3.3: The second paradigm 37

Figure 3.4: The third paradigm 38

Figure 3.5: A Generic Internet Platform 43

Figure 3.6: System design using the first paradigm and Tool A as front end. 48

Figure 3.7: System design using the first paradigm and Tool A is distributed between the

client and the server. 50

Figure 3.8: System design using the first paradigm with a newly designed front and back

end.51

Figure 3.9: System design using the second paradigm52

Figure 3.10: System design using the third paradigm 53

Figure 4.1: First level DFD of database administration applet. 55

Figure 4.2: First level DFD of course registration applet. 56

Figure 4.3: First level DFD of Edplan Checker tool57

Figure 4.4: System design using the first paradigm 60

Figure 4.5: Design of the integrated system using the first paradigm and the first tool on

the client side.......63

Figure 4.6: Main database administration page64

V

Figure 4.7: Course registration applet window 65

VI

LIST OF TABLES

Table 3.1: Steps of the integration methodology 30

Table 3.2: Choosing the integration paradigm 38

Table 3.3: Choice of integration paradigm according to the extendibility method 40

Table 4.1: Tool Characteristics Summary 59

Vll

AFTT/GCE/ENG/OOJ-Ol

Abstract

Web-based technologies are evolving very rapidly. New technologies are intro-

duced very frequently in the realm of the Web and Internet. This evolution also affects

database management systems (DBMSs). Almost all DBMS vendors are making their

systems "Web-enabled." The Internet and the World Wide Web are getting more impor-

tant and bigger than ever. Because of the increase in the importance of the Internet and

the Web, migrating old applications and tools to a web-based environment is becoming

more important. When migrating old applications or tools to the web-based environment,

integration of tools becomes an important issue. In this research, a step-by-step method-

ology for integrating tools in a web-based environment is created while trying to integrate

two tools that are part of the AFIT education plan administration and course registration

system. These two tools are CLASPICS (Computerized, Lightweight Assistant for Stu-

dent Programme Identification and Course Selection) and Education Plan Checker tool.

The methodology proved to be favorable for integrating tools in a web-based environ-

ment. In the results and conclusion part of the thesis some recommendations for improv-

ing the methodology and the Edplan administration and course registration system are

given.

Vlll

A METHODOLOGY FOR INTEGRATING TOOLS
IN A WEB-BASED ENVIRONMENT

1. Introduction

1.1. Background

The software technology in the realm of database systems and Internet computing

is evolving very rapidly. We hear of new technologies announced every week on both the

hardware and the software side. The evolution of the database systems is making its way

towards the Internet. DBMS vendors are trying to make their products "Web-Enabled".

Some DBMSs are now usable and maintainable from within a browser, which can be run

on any platform. They are trying to add new functionality to their software to supply easy

web publishing of the data in the database. They are trying to add capabilities like dy-

namic web publishing directly from the database. Because all business and work are

moving to the Internet, companies and organizations are also trying to migrate their old

legacy databases and applications to the Web environment, or they are trying to make

them web enabled. Instead of discarding the old applications and databases, companies or

organizations "web-enable" their applications and migrate their systems into a web-based

system. Rebuilding the system from scratch may be another option, but it should be the

last option because of its cost. Creating a new system and software will obviously be

more costly than migrating old applications in a web-based environment. While migrat-

ing or web-enabling the applications, integration of the tools becomes an important issue.

All the companies or organizations would like to integrate the tools they use and take full

advantage of the web-based environment. While web-enabling applications and tools, we

may eventually need to integrate tools.

The Air Force Institute of Technology (AFIT) also has a big web-based environ-

ment. This is a big intranet. There are lots of different tools and applications running on

this network. These are either commercial applications or tools created by students in

class projects. Each of these tools does many different tasks. Some of them are used for

similar tasks and they do redundant work. They store the same information in different

places and different formats. They use different database systems. Some of them use the

same database system, but still store the same information repetitively. Integrating the

related applications and tools will solve some problems and get rid of storing redundant

information. This will centralize the information and make it more consistent.

In such a web-oriented world, we are using a course enrollment system at AFIT

that is time consuming and requires redundant work. We have many facilities in AFTT to

make use of for creating a better and more efficient system. We can make full use of the

web-based environment in AFTT by creating a more coherent system. Former work in this

area resulted in some good solutions for some of the problems. But all the work done so

far takes just one part of the problem, and tries to give a solution for that part. Each task

has a different approach to the problem. We have to make a web-based and complete sys-

tem, which includes all other work done so far. Having this web-based environment, we

can integrate all the tools and solutions created until now on this environment to make a

more consistent and coherent system as a whole.

1.2. Problem

The current enrollment system works as follows. The student decides which

courses to take according to his/her programme requirements, choices, and the recom-

mendations of his/her advisor. After preparing the education plan (Edplan) manually,

he/she prepares a formatted input file for an Edplan Checker tool using a text editor. This

tool reads the input file and checks the student's Edplan for any errors and for compli-

ance with the AF1T requirements. Many problems occur in this step. Generally, students

make many typing errors when preparing the input file for the Edplan Checker. Because

of these typing errors, running the Edplan Checker tool becomes hard and time consum-

ing. The student edits the input file and corrects the typing error. If there aren't any other

typing errors, the Edplan Checker tool finally checks the student's Edplan. Then it gives

an output file that includes which courses the student takes each quarter, the credit hours

for each course, total credit hours for each quarter, overall total credit hours, and a classi-

fication of courses. Then the student gives a printout of this file to the advisor. The advi-

sor checks the draft Edplan for any possible changes. If the advisor rejects the Edplan

then the student resubmits it after making necessary changes. After the final Edplan is

submitted the advisor inputs the Edplan of the student to the actual course registration

database via a client-side application (STARS) by retyping all the courses. This phase is

the time consuming part for the advisor. The advisor has to input courses for each quarter

for each of his students. If any change is needed for the Edplan of the student, the same

things are done again. This process is shown in Figure 1.1.

There may be other changes to the Edplan of the student later, any time during the

education period. The student may want to make changes to his/her Edplan before a quar-

ter starts. The student can also drop or add some courses after the beginning of a quarter.

There may be changes to the Edplan any time during the education. The student may

need to change his/her Edplan due to some course cancellations. Because of these

The Student prepares a
■pretty printed" input file for

the "Edplan Checker"

The student takes the
edplan output to the advisor

There may ben changes to I
the edplan at different times K

The advisor retypes the
edplan by means of an

application which registers
the edplan to the Registrar's

database

Edplan Checker" creates
student's edplan

Figure 1.1: Current course registration process.

frequent changes to the Edplan the process of making the Edplan, entering it into the

Registrar's official database, and changing it has to be easy and done without redun-

dancy.

As a recent improvement to the system, a tool for Edplan creation and mainte-

nance (CLASPICS - Computerized Lightweight Assistant for Student Programme Identi-

fication and Course Selection) is created by Jason Gunsch, a summer intern student. This

tool helps the students while preparing their Edplans and lets them to save the Edplans in

a database for future use and reference. This tool also creates and displays the input file

for the Edplan Checker tool. But the student has to cut and paste this output of the tool to

a text file and save it. After that the student has to run the Edplan checker tool with this

input file. This solves the creation of the input file for the Edplan checker tool to some

extent. But it is desirable that the student could be able to prepare the Edplan and check it

from one tool.

PROBLEM STATEMENT:

The actual problem is to define a methodology for integrating existing tools into a

web-based system. By doing so, we will be able to integrate the existing tools into a web-

based system and to develop a prototype enrollment system at AFIT to demonstrate the

methodology, which provides ease of use to the users, prevents typing errors, and re-

moves the redundancy in the current system.

1.3. Summary of Prior Effort

Tien-Chen Lee's [1] thesis project was to develop a web-based prototype for

AFIT Edplan administration. In his project, he follows the "Engineering Software Com-

ponents for Web-Based Access" methodology of Daniel DiPiro [2] to develop a proto-

type system. After providing some background information on some database connec-

tivity techniques (such as CGI, ODBC, JDBC, and ADO), and software technologies for

web-based database access (Applets, ASP), he applies DiPiro's methodology for the pro-

totype system. He uses Microsoft's ASP, and ADO technologies to implement his sys-

tem.

Another work on the same problem was done by Penelope Noe as a special study.

She developed an application that inputs the Edplan directly to Registrar's database using

the input file that the student created for the Edplan checker tool. She uses SQL and C++

to directly input the data into the Registrar's database.

The work done by Jason Gunsch makes big contributions to solve the problem.

He created a tool for the students to create and save their education plans. This tool lets

the students choose the courses from a list of courses using a graphical user interface

(GUI). This tool eases the Edplan preparation process and reduces the time spent for the

process by the student. Since the tool saves the Edplan of the students in a database, the

students can easily make changes to the Edplans and save them again. The tool also lets

the advisors see the Edplans of their students and make any change on them by loading

from the database. The tool creates a requirements structure in the database and helps the

students to easily create their Edplans without any typing errors. However, the Edplan

created by this tool still has to be checked by the Edplan Checker tool. This tool helps the

students at this point also by creating the input file for the Edplan Checker tool.

1.4. Scope

The main objective of this research is to develop a general methodology for inte-

grating tools in a web-based environment. This project does not include creating a course

scheduling system and integrating it to the current system. The main concern will be to

demonstrate the methodology by creating an easy to use web-based Edplan creation and

administration system to be used by the students and the advisors by integrating the exist-

ing tools.

1.5. Approach

While doing this project the following approach was used:

1. Learn ways of developing web-based applications:

Survey the current software engineering approaches for web-based and dis-

tributed application development to decide on an appropriate analy-

sis/modeling system.

2. Analyze the current system:

Figure out how the current system works and find out all the problems with

the current system and the requirements for the new system.

3. Analysis and modeling:

Perform the analysis and modeling techniques used for development of a web-

based application.

4. Implementing the created model:

Implement the created model in the selected platform.

5. Testing the developed application:

Test the developed application and show its usability.

6. Define a general methodology based on the enrollment system project

1.6. Assumptions

Before beginning the methodology and system development process, a few as-

sumptions have to be made. It is assumed that there are enough resources for gaining

enough knowledge about the tools and development environments that will be used while

developing the methodology and developing the system. It is also assumed that the SC

department will provide any necessary schema definition and interface documentation for

the actual Registrar's database. Another assumption is that all necessary resources like

hardware and software resources, past research, and documentation are available.

1.7. Thesis Overview

This chapter gives the description of the problem to be solved, lists the previous

work done about the problem and related subjects, gives the scope of the thesis investiga-

tion, and the approach taken in solving the problem. Chapter II is a literature review of

basic web and Internet technologies, and presents an overview of the research done pre-

viously about the subject. In Chapter III, the "web-based integration methodology" is ex-

plained. In Chapter IV, an application of the methodology is demonstrated on two tools to

solve the problem. The last chapter presents the results and conclusions of this effort.

2. Web-Based Technologies

There are many different web-based application development technologies. How-

ever, they can be used interchangeably. While developing web-based applications, there

is no right way to solve a problem and there is no truly unique technology. However,

many tools and technologies can be configured in multiple ways to solve the same set of

problems. For example, server side technologies, like Common Gateway Interface (CGI),

Active Server Pages (ASP), Java servlets, Java Server Pages (JSP), and other proprietary

server-side technologies all serve the same basic function. Similarly, Common Object

Request Broker Architecture (CORBA), Distributed Component Object Model (DCOM),

Enterprise Java Beans (EJB), and Remote Method Invocation (RMI) all specify how dis-

tributed objects communicate. Of course, they have many different properties and they

have advantages and disadvantages over each other.

As such, web technologies within the same categories can be used interchangea-

bly in most situations. I will explain some web technologies that can be used to develop

web-based applications in this chapter.

Web-based applications generally do similar things. These are shown in Figure

2.1 and are listed as follows:

• Provide a user interface: Web applications have to provide users an inter-

face for entering data or requesting data. This can be a web browser with

an HTML form loaded or a Java applet running on it.

• Transmit the Data or Request: The user data or request is sent to the web

server. This is generally done using HTTP protocol.

User

1. User defines a query,
requests a document, or
supplies input informa-
tion

2. Query interface sends
the request to the server

3. Server responds to the
request using some data
sources or other services

Client-side
interface

(Web Browser)

6. The results are displayed
to the user after client side
processing.

5. The server returns the
results back tot the client
after server side processing

4. Data source returns the
query results.

Figure 2.1: Web-based applications.

• Perform Server Side Processing: The web server processes the user data

using a middleware. This can involve sending the user query to a data

source and getting the results, applying some business logic to the user

data, and/or server-side processing of the requested document.

• Transmit the Results Back: The processed data is sent back to the client if

it was requested, by using HTTP protocol again.

• Perform Client Side Processing: Finally the returned data is processed on

the client side again to be displayed correctly. This can be the interpreta-

10

tion of an HTML page, possibly with some embedded scripts like

JavaScript or VBScript, or displaying the data in a Java applet.

2.1. Server-Side Technologies

2.1.1. CGI (Common Gateway Interface)

The Common Gateway Interface is a standard that specify communication be-

tween HTTP servers and server-side gateway programs. When a gateway program is re-

quested from the server, the server activates the program and passes the data from the cli-

ent to the program. The program processes the data and sends the result back to the

server. Then the server sends this data back to the client. The format of the data passed

back and forth between the server and the gateway program is defined by the CGI speci-

fication [22].

CGI Scripts are easy to implement; they don't require knowledge of any new pro-

gramming environment. They can be implemented any standard programming language

like C, C++, or Pascal. There is no need to change the programming language currently

used to develop a CGI application. CGI applications can also be scripts written in script-

ing languages like perl, tcl, or other shell programs. CGI applications are also very com-

mon and supported by almost all of the web servers on the market.

Since CGI has some performance limitations, it is not suited for large-scale sys-

tems. This is because every request starts a new process on the server. In addition, CGI

scripts, usually written in perl, lack many features of a more general programming lan-

guage like Java. However, CGI is well suited for small-scale projects with low perform-

ance requirements.

11

2.1.2. Java Servlets

Java servlets are compiled Java code that extend Java-enabled web servers. Java

servlets are starting to be used more than the CGI scripts. Since the servlet API, which is

used to write servlets, assumes nothing about the server's environment or protocol, serv-

lets can be embedded in many different servers. Almost all of the web servers on the

market today have support for Java servlets. A list of the web servers that support Java

servlets can be found in Sun's Javasoft web pages [4].

Java servlets are to the server what applets are to the browser. Anybody who

knows how to program in Java, can write Java servlets. All he/she needs to do is use

Sun's Java Servlet API. Since the servlets are pure Java, they carry all the advantages of

the Java programming language. Java servlets are inherently platform independent. You

can run a servlet on any web server running on any platform without making any

changes. There has to be a Java Virtual Machine (JVM) running on the server to run the

servlets. This leads to some other benefits. The built-in garbage collection won't allow

any resource leak caused by servlet errors or exceptions. Java servlets give a robust de-

veloping environment to the web developers. They can use the full power of a computa-

tionally complete and platform independent programming language like Java. Servlets

obtain database access using the JDBC API. Distributed programming is also supported

using Remote Method Invocation (RMI) or CORBA. Java servlets can be used to get rid

of security issues while accessing an RDBMS, which is running on a machine other than

the web server. Java servlets are becoming the most robust and widely used server side

technology. [17]

12

2.1.3. Active Server Pages (ASP)

Active Server Pages (ASP) technology is a powerful web server feature of Micro-

soft. ASP was introduced with Microsoft's Internet Information Server (HS) version 3

[23]. ASP technology allows mixing HTML and server-side scripting in a file. The client

requests an ASP file from the server. The web server processes the file with the .asp

extension before sending it to the client. After processing the script embedded in the

HTML code in the ASP file, the server creates a dynamic html page for the client and

sends it back. By using ASP technology, developers can use Microsoft's ActiveX Data

Objects (ADO) to access different data sources using ODBC. Two different scripting

languages can be used in ASP files. These scripting languages are VBScript and Jscript.

VBScript is a stripped-down version of Microsoft's Visual Basic programming language

and Jscript is the Microsoft implementation of Netscape's JavaScript server-side scripting

language [24]. The combinations of scripting language, programmatic access to ActiveX

components, and dynamic generation of HTML make ASP a powerful technology for

building dynamic web sites [25]. ASP can link to back-office services and technologies

including Microsoft's COM (Component Object Model) objects and Microsoft

Transaction Server (MTS) at the server side to build complicated business logic [26].

Using ASP is easy compared to CGI scripts. ASP is designed as a convenient alternative

to conventional CGI scripting using perl or C scripts.

The biggest drawback of ASP technology is that it is Microsoft specific and a

platform dependent technology. Only HS has support for ASP and US runs only on Win-

dows NT platforms. There are some recent efforts to give ASP support on the UNDC plat-

form. For example, Chilisoft [5] has developed ChiliASP to give ASP support on a Unix

platform. There is also an ASP module for the widely used web server Apache.

13

2.1.4. Java Server Pages (JSP)

JSP is Sun Microsystems' technology that mirrors Microsoft's ASP. Like ASP,

JSP lets users embed code directly into HTML pages for server-side processing and dy-

namic web-content delivery. It uses a similar technology, but instead of using scripting

languages, leverages the full power of the Java programming language. JSP can make use

of Java servlets and Enterprise Java Beans (EJB) on the server side like ASP does with

ActiveX objects. [26]

JSP handles the code embedded in HTML in a different way than ASP. ASP in-

terprets the embedded script in the HTML. JSP compiles the Java code into a servlet and

then executes it by the Java Virtual Machine. The compilation of the code occurs only

once on the first request of a JSP page. [29]

2.2. Client-Side Technologies

Client side scripting languages are designed to allow programs to be encapsulated

in HTML documents as plain text. These small programs are executed on the client ma-

chine by the browser. These scripts perform computations and react to events on the cli-

ent processor. The main purpose of client side scripting is to use the CPU power on the

client computer, which does not do anything other than browsing the web. It is a good

idea to share some of the burden between the client and server by taking some of the

processing load off the server and giving it to the client. [27]

Client side scripting is useful to do things like maintaining state, filling out forms,

error checking, checking validity of data input in an HTML form, or doing numeric cal-

culations. The client browser doesn't need to go back to the server to do these things. By

using client side scripting, we can take some of the workload off the server and give it to

14

the client. We can also eliminate some network traffic. Client side applications maintain

security by keeping server processing to a minimum. They are not restricted by HTTP

and very good GUI designs can be done. [27]

The most used client-side scripting languages are JavaScript (Netscape), JScript,

and VBScript (Microsoft) [27]. JavaScript was first developed by Netscape and used in

their browser Navigator 2.0. JScript and VBScript are Microsoft's scripting languages

used in Internet Explorer.

The biggest problem with the client side scripting is the lack of standards. Be-

cause not all the browsers have support for all scripting languages, web pages that in-

clude scripts generally cannot be loaded and run correctly on all browsers. To get rid of

this problem ECMA (European Computer Manufacturers Agency), a standardization or-

ganization developed a standard for JavaScript. This standard was named as ECMAScript

and documented in the ECMA-262 specification. The ECMA-262 standard is also ap-

proved by ISO (International Standardization Organization) as ISO-16262. The current

versions of both JavaScript and JScript have support for ECMAScript. [28]

2.2.1. Java Applets

Java applets are downloaded client side programs that run within the Java Virtual

Machine (JVM) of a Java-enabled web browser. The name of the Java applet is embed-

ded in the HTML code via an <APPLET> tag. When a browser loads an HTML page

with a Java applet it loads the Java applet from the server and runs it in its JVM. [6]

By using Java applets developers can use the full power of the Java programming

language within the security limits of the browser. Applets are restricted to functioning

within the Java security framework. If an applet is not signed by a trusted source, it can

15

only run in a secure sandbox within the browser JVM. If an applet is not signed, many

restrictions apply to it [6]:

• Applets cannot access the local file system of the client computer.

• Applets cannot create a network connection to a machine other than the

one from which the applet was loaded.

• Applets cannot act as network servers, listening for or accepting socket

connection's from remote systems.

• Applets are prevented from executing any programs that reside on the lo-

cal computer.

• Applets are not allowed to load dynamic libraries or define native method

calls.

• Applets are allowed to read only certain system properties and are pre-

vented from accessing others. (Within the Java environment, various stan-

dard system properties are set. These properties can be accessed with the

Java. lang. System.getProperty (String key) method.)

• Applets cannot manipulate any Java threads other than those within their

own thread group.

• Applets cannot shut down the JVM. (By calling System, exit ())

• Applets cannot create a SecurityManager or ClassLoader instance.

The Java browser creates such an object and uses it to impose the security

policy on all applets.

• The j ava. net package uses factories to establish particular implementa-

tions of specific concepts: protocol handlers, content handlers, and sockets.

16

Applets cannot override the java.net.ContentHandler-Factory, and

Java.net.SocketlmplFactory.

2.2.2. ActiveX Controls

ActiveX controls are reusable programs that can be inserted into a web page or

other application. ActiveX controls are native Windows applications and therefore run only

within these environments. ActiveX controls communicate with the browser and the

operating system using a well-defined COM interface.

Developers can insert ActiveX controls into a Web page by using the <OB JECT>

tag in the HTML page and referring to the Classld of the ActiveX control. When a user

clicks on a page with an OBJECT tag and a Classld, ActiveX on the client looks up the

client systems registry to find the ActiveX control code referred to with the Classld. If

the relevant ActiveX control is already present on the client system, that code is invoked

and executed on the client. If the ActiveX control code is not already present on the client

system, it is downloaded from the server, installed on the client after checking for secu-

rity, and then invoked on the client. Once downloaded and installed, an ActiveX control

can be used in any HTML page or any Windows application. ActiveX will also provide

versioning support by enabling the option to download the latest version of an ActiveX

control.

ActiveX controls are Windows-specific programs. They don't work on other operat-

ing systems. They also cannot work on a browser other than Internet Explorer without a

plug-in. Developers can use many different kinds of development environments and lan-

guages, like Visual C++, Visual Basic, Visual J++, Borland Delphi, Borland C++, and Sy-

mantec C++. ActiveX controls created using these languages can do everything that tradi-

17

tional Windows applications can do, including all native operating system services. This

gives great power to the developers.

2.2.3. Dynamic HTML (DHTML)

Dynamic HTML is another technology that adds action to static web pages. The ba-

sic notion of DHTML is to allow any element of a web page to be changeable at any time.

With DHTML, all the work is done on the client side. All page modifications appear im-

mediately following a trigger, such as a user selection, or a mouse click. All the aspects of

a loaded page including text styles, swapped images, context-sensitive forms and tables,

and the data can be modified. DHTML describes the abstract concept of breaking up a page

into manipulable elements, and exposing those elements to a scripting language that can

perform manipulations [7].

2.3. Database Connectivity

Currently there are two types of database connectivity methods widely used on

web-based applications and on the Internet platform. These are ODBC (Open Database

Connectivity) and JDBC (Java Database Connectivity). ODBC is developed by Microsoft

and is mostly used by Microsoft technologies. JDBC is developed by Sun Microsystems

and is used by Java applets or Java applications. -

2.3.1. JDBC

JDBC is a Java API for executing SQL statements. It consists of a set of classes

and interfaces written in the Java programming language. JDBC provides a standard API

for tool/database developers and makes it possible to write database applications using a

pure Java API. The JDBC API is based on the X/Open CLI (Call-Level Interface), which

defines how clients and servers interact with one another when using database systems.

One of the most important benefits of using JDBC API is database interoperability. The

program developer can change the underlying database driver without having to modify

the application. There is a JDBC-ODBC bridge driver that comes with the standard Java

programming API. This bridge driver can be used in Java programs to access ODBC da-

tabases. [30]

There are four basic types of JDBC drivers. These four types can be listed as fol-

lows:

Type 1: The JDBC-ODBC Bridge. The JDBC-ODBC bridge is provided by Java-

Soft as part of its JDK (Java Development Kit). This bridge is part of the sun.jdbc.odbc

package and is not required to be ported by vendors that provide a Java virtual machine.

This bridge uses native ODBC methods and has some limitations in its use. This driver

can be considered for the following implementations: Quick system prototyping, Three-

tier database systems, Database systems that provide an ODBC driver but no JDBC

driver, Low-cost database solution where you already have an ODBC driver.

Type 2: Java to Native API. This kind of driver makes use of local native libraries

provided by a vendor to communicate directly to the database. This type of driver has

many of the same restrictions as the JDBC-ODBC bridge, since it uses native libraries.

These libraries must be installed and configured on each machine that will be using the

driver. This kind of driver can be considered for the following implementations: as an

alternative to using the JDBC-ODBC bridge, since this type of driver performs better

than the bridge, or as a low-cost database solution where you are already using a major

database system that provides a type 2 driver.

19

Type 3: Java to Proprietary Network Protocol This type of JDBC driver is the

most flexible one. This type of driver is generally used in three-tier solutions and can be

deployed over the Internet. Type 3 drivers are pure Java and communicate with some

type of middle tier via a proprietary network protocol created by the driver vendor. This

middle tier will most likely reside on a Web or database server and, in turn, communi-

cates with the database. Using this kind of driver can be considered for the following im-

plementations: web-deployed applets that do not require any preinstallation or configura-

tion of software, secure systems where the database product will be protected behind a

middle tier, flexible solutions where there are many different database products in use-the

middle-tier software can usually interface to any database product accessed via JDBC, or

clients requiring a small "footprint"- the size of the type 3 driver is usually much smaller

than all other types.

Type 4: Java to Native Database Protocol Type 4 JDBC drivers are pure Java

drivers that communicate directly with the database engine via its native protocol. These

drivers may be able to be deployed over the Internet, depending on the native communi-

cation protocol. The advantage that type 4 drivers have over all the rest is performance;

there are no layers of native code or middle-tier software between the client and the data-

base engine. Using this kind of driver can be considered for the following implementa-

tions: when high performance is critical, in environments where only one database prod-

uct is in use, or web-deployed applets, depending upon the capabilities of the driver.

There is a basic flow of steps that all JDBC applications follow.

1. Load the JDBC driver

2. Establish a connection to the database server

20

3. Execute a SQL statement

4. Process the results

5. Disconnect from the database

The first step in using JDBC is to load the driver. This is usually accomplished us-

ing the forName static method of the Class object (which is part of the base Java sys-

tem). The call is made as follows:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

The second step is to establish a connection. JBC connections are specified by a

Uniform Resource Locator (URL), which has the general format:

jdbc:<subprotocol>:<subname>

where subprotocol is the kind of database connectivity being requested (such as

ODBC, ORACLE, Informix, etc.) and subname provides additional information required

to establish a connection. An example of requesting a connection to an ODBC data

source named "MyDataSource" via the JDBC-ODBC bridge is:

Connection con = DriverManager.getConnection(

"j dbc:odbc:MyDataSource");

Next step is to create and execute a SQL statement. A Statement object has to

be created before executing a SQL statement. This is accomplished with a call to the

Connection class createStatement method as follows:

Statement stmt = con.createStatement();

Then we can execute a SQL statement and return a ResultSet object. This is

done as follows:

ResultSet rs = stmt.executeQuery("select * from students");

21

Then we can iterate the results by making a call to the next method of the Re-

sultset object as follows:

Boolean more = rs.next();

We can use the getXXX methods of the ResultSet object to get the results of

SQL query. The last thing we have to do is to close the connection that we have opened

using the close method:

con.close() ;

This should be called to ensure that the underlying database system frees all the

associated resources properly [17].

2.3.2. ODBC

Like JDBC, ODBC is an API for database access. It is also based on the Call-

Level Interface specifications from X/Open and ISO/TEC for database APIs and uses

SQL as its database access language. ODBC is designed for maximum interoperability-

that is, the ability of a single application to access different database management sys-

tems (DBMSs) with the same source code. Database applications call functions in the

ODBC interface, which are implemented in database-specific modules called drivers. The

use of drivers isolates applications from database-specific calls in the same way that

printer drivers isolate word processing programs from printer-specific commands. Be-

cause drivers are loaded at run time, a user only has to add a new driver to access a new

DBMS; it is not necessary to recompile or relink the application. [21]

The ODBC architecture has four components:

• Application. Performs processing and calls ODBC functions to submit SQL

statements and retrieve results.

22

• Driver Manager. Loads and unloads drivers on behalf of an application. Pro-

cesses ODBC function calls or passes them to a driver.

• Driver. Processes ODBC function calls, submits SQL requests to a specific

data source, and returns results to the application. If necessary, the driver

modifies an application's request so that the request conforms to syntax sup-

ported by the associated DBMS.

• Data source. Consists of the data the user wants to access and its associated

operating system, DBMS, and network platform (if any) used to access the

DBMS.

The illustration in Figure 2.3 shows the relationship between these four compo-

nents.

Application J
^-*-

Driver Manager]|

ODBC API

ODBC API

Data
Source

Data
Source

Data
Source

Figure 2.2: The ODBC Architecture

There can be multiple drivers and data sources. This allows an application to si-

multaneously access data from more than one data source. The ODBC API is used in two

places: between the application and the Driver Manager, and between the Driver Man-

ager and each driver. The interface between the Driver Manager and the drivers is some-

times referred to as the service provider interface, or SPI. For ODBC, the API and the

23

service provider interface (SPI) are the same; that is, the Driver Manager and each driver

have the same interface to the same functions [21].

2.4. Previous Work

There are a few theses previously done in AFTT about web based application de-

velopment and integrating relational databases and other tools in a web based environ-

ment. One of these is done by Daniel L. DiPiro [2]. In his thesis DiPiro focuses on "a

methodology that can be used in the analysis of a web based data access enterprise to aid

the developer in choosing the right software technologies." After giving some informa-

tion on the client-server model, current Internet technologies, and some database access

techniques he defines his methodology. His methodology "examines the key environ-

mental factors affecting the design of web software components and the areas in which

they should influence design decisions." He also gives an example implementation of his

methodology as a case study.

His methodology has three main steps:

1. Development Environment Analysis

2. Component Analysis and Design

3. Function Implementation

Each of these steps has some other sub steps.

The development environment analysis is divided into three components. These

are client environment, existing data source architecture, and existing resource environ-

ment. He does his client environment analysis according to the number of potential inter-

nal and external clients, and the hardware and software platforms they use. He differenti-

ates the clients as internal and external according to their network connectivity.

24

Then he does his analysis of existing data source architectures. This is important

when deciding on the web-based database access technology for the system. This analysis

includes existing database management systems (DBMSs) and the location of data

sources.

The third phase of the development environment analysis is the analysis of the ex-

isting resource environment. This includes time, money, and personnel. The availability

of these three resources is very important in a development effort. The designer will gen-

erally be limited in one or two of these.

The second step of his methodology is component analysis and design. This step

of the methodology includes functional analysis and functional decomposition of the ap-

plication. While doing the analysis of the components, generally Data Flow Diagrams

(DFD) are used.

The third step, function implementation, consists of analysis of possible technolo-

gies that can be used to implement each sub-component process, designed in the compo-

nent analysis and design step. This analysis is done in terms of how each technology can

interface with other technologies. He gives a small description of each technology and

some implications of choosing that technology to implement a sub-process.

In the last part of his thesis, DiPiro implements his methodology in a case study.

In this case study, he designs an application to provide access to existing AFIT/CI data

sources.

Another thesis on a similar topic was done by Tien-Chen Lee (Taiwan AF) [1].

He designs a web-based prototype for AFIT Edplan Administration in his thesis. He uses

25

DiPiro's methodology while analyzing and designing the web-based prototype. Lee's

thesis work is an implementation of DiPiro's methodology.

After applying the methodology, he chooses Microsoft technologies for his sys-

tem. He chooses ASP technology for designing web pages, ODBC for the database con-

nectivity, and Microsoft Access as the database. The overall system he designed has

some limitations. These limitations result from sticking to only one technology while de-

signing the user interface and web pages. He only uses pure HTML while designing the

user interface. This limits the ease of use of the interface. It could be done in a user-

friendlier manner by using ActiveX components and scripting languages on the client

side. As he states in the conclusion of his thesis, another drawback of his system is that it

does not support concurrent access to the database. This is because he uses Microsoft Ac-

cess as the database management system. A more powerful RDBMS, like Oracle, which

is available in AFIT, could be used as the DBMS.

Lee finds DiPiro's methodology very helpful to the developers while making de-

cisions for choosing the right technologies to create web-base applications. He also finds

it helpful during the implementation of the design. He states that DiPiro's methodology

narrows down the range of technologies to be chosen from. This reduces the time needed

for creation of web-based applications. The overall comment of Lee on DiPiro's method-

ology is that it was complete and thorough for the design and implementation of the web-

based AFIT Edplan administration application that he created.

Another thesis on integrating software tools is done by Penelope Noe [3]. In her

thesis, Noe defines a methodology for tool integration in a structured approach. Her inte-

gration methodology is based on the concept of a design space, composed of functional

26

and structural dimensions. The functional dimensions of the design space identify the re-

quirements for the tool that most affect the solution for the integration effort. The struc-

tural dimensions of the design space determine the overall framework of the integrated

system. The characteristics of the tool pair being integrated are defined in the functional

dimensions and the characteristics of the resulting integrated system are defined in the

structural dimensions in her methodology. She also defines some design rules, which are

guidelines for choosing between structural dimensions given a set of functional dimen-

sions, to do the mapping from the functional dimensions to the structural dimensions.

She defines two sets of functional dimensions: one for a single tool and one for

the tool pair. The functional dimensions for a single tool are input characteristics, output

characteristics, and tool extendibility. The functional dimensions for the tool pair are ex-

tendibility class and data compatibility.

The structural dimensions for the system include the communication path, control

integration implementation, and data transformation. Then she defines some design rales,

which are used to decide which method of integration to choose. Design rules use the

values given to each of the functional dimensions, for both a single tool and the tool pair,

to determine the structural dimensions for the integration. These design rules are applied

to determine the structure of the system.

Then she uses this methodology to integrate different software with AFTTtool.

She integrates Rational Rose 98, a CASE tool for software development, Acme parser,

and daVinci, a graph layout tool with AFITtool.

27

This integration methodology considers only data and control integration of

Wasserman's five integration classes: platform, presentation, data, control, and process

integration [8]. She explains this as due to the nature of the integration effort.

2.5. Summary

In this chapter, some of the web-based technologies are described briefly. These

technologies are separated as server side (CGI, Java servlets, JSP, ASP) and client side

(Java applets, ActiveX controls, DHTML) technologies. A general architecture of a web-

based application is illustrated. This way we will have a better understanding of the web-

based technologies used in this research. The two widely used database connectivity

methods (JDBC and ODBC) are also mentioned. In the last part of the chapter a brief

summary of some of the related research done previously is given.

28

3. Web-based Integration Methodology

Integrating tools or applications in a web-based environment is a similar task to

tool integration in general. But of course there are some differences. Generally the overall

purpose is to form a complete system using the available tools. Another goal may be

making the system available from outside of the organization. This might be necessary

when a company decides to make some of its resources available via the Internet. This

kind of integration may also be needed when two companies merge. Each of them may

need to use tools or applications of the other company or a combination of applications or

tools from both of the companies. The merging companies might need to integrate their

databases over the Internet in some way.

3.1. Overview

This integration methodology is based on the Internet platform that generally con-

sists of a web server, an application server, a database server, and client browsers. Before

starting to explain the methodology we have to identify the properties of the Internet plat-

form, and draw a general picture of it. Then we apply the methodology steps shown in

Table 3.1. In order to have a well-integrated system first we have to perform a good

analysis of the tools at hand. This analysis will include the extendibility and the source

code if available, the input and output characteristics of the tools, and the user interfaces.

29

1. Analyze the tools

2. Choose an integration method

3. Analyze the target platform

4. Design the system

5. Implement the design

Table 3.1: Steps of the integration methodology.

The second step is choice of an integration method according to the results of

analysis of the tools. While choosing the integration method we basically use Noe's ap-

proach [3]. The third step is the analysis of the target platform in which we will list the

properties of the available resources. After the analysis of the target platform we can start

designing the integrated system. During this design phase we have to make use of some

basic software engineering techniques. After finishing the design of the system we have

to implement it. DiPiro's methodology will help us while implementing our design [2].

3.2. Analysis Of The Tools

Analysis of the tools to be integrated will include what Noe describes as the func-

tional dimensions of the tool set. While doing this analysis we will characterize the tools

both individually and as a pair like Noe does in her integration methodology. This will be

the first level analysis of the tools. After making some design decisions and choosing the

integration method in the following steps of the methodology we may need to make some

detailed analysis of the tools. The first level analysis will include three steps. We will

first analyze the extendibility and availability of source code of the tools. Then we will

analyze the input and the output characteristics of the tools. We also need to analyze the

user interfaces.

30

Extendibility and Source Code Availability

Extendibility of a tool is very important for the integration process. Extendibility

of a tool means that it is possible to extend the tool beyond its current capabilities. The

integrator can add the necessary functions and methods to the tool for the integration pur-

pose. [3]

Availability of the source code is very important for the extendibility of a tool. If

the source code is available the design of the integrated system can be easier. We can

separate the code so that some of the code runs on the client side and some of it runs on

the server side. We can recompile the tool to run on a different hardware or software plat-

form. We can add new methods and functions to ease the integration process or to add

new capabilities to the overall system. We can make some changes to the tool to be able

to integrate it.

In most cases the source code of the tool is not available. But generally there are

other ways of extending the tool. Some tools supply a scripting language and capability

to add new menu items and options to the tool. The user can add new menu items and

associate them with written scripts to extend the tool or to automate some process se-

quences [3]. Others may supply macro capabilities for the same kind of extendibility.

There may be other proprietary extendibility methods for the tools. After making the

analysis we can characterize the tool with one of the four alternatives below:

• Source code available

• Provides an extendibility method

• Both of these

• Not extendable

31

When we finish the extendibility analysis of both of the tools we will come up

with one of three possibilities. These are:

• None of the tools are extendable

• One of them is extendable

• Both of the tools are extendable

Input and Output Characteristics

This part of the analysis will give us the methods that the tools use to obtain their

data and to output the results of the functions they perform. The input and output systems

can be either a persistent data store or a non-persistent data store, or a combination of

them. Noe lists four input methods that a tool may use:

"Standard Input: This is the default input mechanism for many applications.

Standard input supports operating system redirection. If the tool is a command

line application everything entered from the keyboard after the tool is executed is

referred to as stdin.

File: The data needed by the tool may be held in one or more files in the file sys-

tem or in tables within a relational database management system. These files may

be created by the user according to some file format specifications or may be cre-

ated at installation time. The path and the name of the files can be fixed and inter-

nal to the tool, may be supplied by the user at run-time, or may be held in envi-

ronment variables. For the purpose of this integration methodology a database

will be considered as file input mechanism.

Command Line Parameters: Command line parameters are given with the execu-

tion command for the tool. Very little input can be given with command line pa-

32

rameters. Command line parameters are mostly used for giving some directions to

the tool.

Message Passing: A tool that uses message passing for data input expects data

and control messages in a special format. To perform its functions it has to re-

ceive these messages. It is possible to capture the messages to and from the tool to

control the system and monitor the flow of communication."

GUI: This is another way of data input mechanism for a tool that is not consid-

ered in Noe's methodology. Since we are doing a web-based integration the GUI must be

considered as an input mechanism. A GUI is formed by using some kind of windowing

system like Windows, X-Windows, Java's AWT or Swing, etc. When a GUI is used as an

input mechanism the data is entered in the tool by using some graphical forms and some

menu system.

Noe lists four alternatives for the output mechanism. These are:

"Standard Output: This is similar to standard input. Stdout is the default output

mechanism for many applications. Just like stdin, stdout has support for operating

system redirection.

File: The results are written to an output file with a specific format. The name and

location of the file can be internal to the tool, can be given at run-time by the user,

or can be held in environment variables. As we have done for the file input

mechanism we are going to consider a database system as a file output mecha-

nism.

Message Passing: Tools that use message passing as an output mechanism send

formatted messages containing the result data to external destinations.

33

Built-in Output: This includes the printer, standard error (stderr), and log files.

The printer is one of the most used output mechanisms. Standard error is the de-

fault output mechanism for the output of errors. The log files are used for writing

output messages about the events that occur during the execution of the tool."

GUI: Here again we are going to consider a GUI as an output mechanism also.

When the GUI output is used the output of the tool is presented within the GUI, probably

in a separate window. This is generally for seeing the results of the tool graphically on

the screen. Generally it is possible to save the GUI output to a file.

User Interface

The analysis of the user interface is important for presentation integration pur-

poses. The user interface of the integrated system should be similar to the original user

interfaces of the tools. The new interface should give the same or better functionality. It

should get rid of the drawbacks of the old interface. It should give new functionalities.

We have three possibilities for the user interface of the tools:

• The tool has a graphical user interface (GUI).

• The tool has an interactive interface.

• The tool does not have a user interface and can be ran by a command with

command line parameters.

If both tools have a GUI and if the functionality of the tool is in the GUI it will be

very hard to integrate these tools. It may even be impossible to integrate them.

If one of the tools has a GUI and the other has a command line interface integra-

tion can be easier. Depending on the properties and capabilities of the tool we can choose

a way of integration.

34

If neither of the tools has a GUI we may need to design a new interface for our in-

tegrated system. This new user interface can be a GUI in a browser or plain HTML based

interface, which includes a form or a series of forms. This part will depend on the choice

of technology for the web interface and our design decisions

3.3. Integration Methods

Before the integration we have two or more tools, each of which performs a dif-

ferent task that is part of an overall goal or helps us to reach the overall goal. But the user

has to run each tool separately, probably inputting the same information in different for-

mats to each tool. The output from each tool is taken separately in different formats. The

tools may need to be run in an ordered sequence, so that the output of one will be used as

an input to the other. The interaction of the user with the tools before the integration pro-

cess can be seen in Figure 3.1.

/t^"^ N

Tool 1

•^ __ S
'"-^I — '^^

Tool 1 Data
Store i f "\

User

v)
f~"~~ ~-—-^

Tool 2 Tool 1 Data
Store

Figure 3.1: Interaction of the user with the tools before integration.

Our goal is to have a well-integrated system that can be run in a web-based envi-

ronment. The degree of integration will depend on the properties of the tools. Thomas

and Nejmeh define the integration as "Integration means that things function as members

35

of a coherent whole." [9] We have to integrate the tools in a system such that the system

serves our overall goal as a whole.

User Tool 1

Tool 2

Tool 1 Data
Store

Tool 1 Data
Store

Figure 3.2: The first integration paradigm.

Now we have to define some integration frameworks while integrating tools in the

web based environment. We can suggest three different integration paradigms from the

perspective of presentation and control integration at this point. Choosing between these

paradigms will mostly depend on the properties of the tools that we have learned during

the tool analysis phase.

The first paradigm, shown in Figure 3.2 is to use the first tool to control the sys-

tem and to run the second tool from the first tool. This can be done in many different

ways that will depend on the detailed properties of both of the tools. In this paradigm the

user will interact with the system via the first tool. The first tool will be extended to in-

clude functions and methods to supply the input data for the second tool, send the data to

it, run the tool with the input data, make the necessary communication between the tools,

and get back the results from the second tool and present the results to the user.

The second paradigm, shown in Figure 3.3, is to design and create a new interface

to the tools. This interface is a front end between the tools and the user. It gets all the

36

necessary input from the user, makes any necessary transformations, sends the inputs to

the tools, gets the outputs and presents them to the user in the desired format. This inter-

face runs the tools in the order that they have to be run, and makes the necessary commu-

nication between the user and tools and between the tools. This user interface might also

directly access the data stores that the tools use making it possible to access the available

data in the data stores directly from the integration interface.

User

Tool 1 Data
Store

Figure 3.3: The second paradigm

The third paradigm, shown in Figure 3.4, is slightly different from the second

paradigm. In the third paradigm we still have to design an integration interface. But the

function of the integration interface is a little different. The integration interface is re-

sponsible for the control and presentation integration of the tools. The interface gets the

necessary input from the user and sends this input to the tools. Then it gets the output

from the tools and presents them to the user. In this case the integration interface doesn't

need to do any data transformation since there isn't a data compatibility problem here.

The tool can read the data of the other tool without the need of any data transformation

process.

37

User

Tool 1

Tool 2

Tool 1 Data
Store

Tool 1 Data
Store

Figure 3.4: The third paradigm

3.4. Choosing An Integration Method

First Second Third
paradigm paradigm paradigm

None extendable V S

One extendable V </ </

Both extendable S S V

Table 3.2: Choosing the integration paradigm

While deciding on the integration paradigm that we are going to use we need to

consider the results of the tool analysis. While choosing the integration method we basi-

cally use Noe's approach. We have to consider each of the three possibilities of the ex-

tendibility analysis. As we can see in Table 3.2 we can choose all the paradigms for all

the extendibility options except the first paradigm for non extendable. We also have to

take into account the data communication and the data transformation between the tools.

None of the tools are extendable

If none of the tools are extendable we cannot control the system using one of the

tools. We have to add an interface to the system that will take care of the control of the

38

tools. In such a case we have to choose the second or the third paradigm. Here we look at

the compatibility of the input/output data of the tools. If the data is not compatible then

we will need to add some data transformation routines, which will lead us to the second

paradigm. If the data is compatible then we won't need any data transformation routines.

In this case we can choose the third paradigm.

As I have explained above we have to design an integration interface between the

user and the tools. This integration interface will be a middleware application. Since we

have to design this middleware application from scratch we can design it as a distributed

application. We can design it so that some part of it runs on the client side and some part

of it runs on the server side. This middleware application has to get the necessary input

from the user and pass it to the first tool or write the input to the shared database if the

tool can read the input from the shared data. Then the middleware application runs the

first tool with the inputs. If there is a data transformation needed between the two tools

during the data exchange the middleware application does this job also. The middleware

application also gets the input for the second tool from the user. Then the middleware ap-

plication runs the second tool. Then it presents the output of both of the tools to the user.

As stated by Noe "the nature of the tools dictates the implementation chosen" for the

middleware application.

One of the tools is extendable

If only one of the tools can be extended then we can choose any one of the inte-

gration paradigms. Our choice will depend on the way the tool is extendable and other

characteristics of the both of the tools. There are three possibilities as explained in Sec-

tion 3.2; source code is available, the tool provides an extendibility method, or both.

39

If the source code of the tool is available it will be better if we choose the first

paradigm. In this case we have to extend the tool by adding necessary methods and func-

tions to the tool to make it possible to control the second tool from the first tool and to

make the data transformation between the tools. We can also choose the second or the

third paradigm. There can be several reasons to this. For example it may be easier to de-

sign a new interface to the system than playing with the source code of the tool. The inte-

grator may not be familiar with the programming language used to code the tool, or it

may be impossible to extend the tool in order to control the second tool. So, instead of

trying to learn the new programming language the integrator may choose the second or

the third paradigm and design an integration interface and implement it with a program-

ming language that he knows best.

First Second Third

Source code ^

Provides a method ^ ^

Both V </ V

Table 3.3: Choice of integration paradigm according to the extendibility method

If the source code is not available but the tool provides extendibility in some way

it will be better if we choose the second or the third paradigm. Then we can design and

implement the integration interface between the tools and the user, which can be distrib-

uted between the client and the server computers. We can either add the data transforma-

tion functions to the integration interface, or extend the tool to take care of this if it is

possible.

If the tool provides both of the extendibility options then we have more flexibility

on choosing the integration paradigm. We can choose the one that best fits the specific

40

needs of our system. We have to take into account our requirements for the integration. In

Table 3.3 we can see the applicable integration paradigms for the extendibility ways pro-

vided by the tool.

Both of the tools are extendable

This case gives us more flexibility for the design of the integrated system. But we

have to check the extendibility ways of the tools. There will be nine combinations for the

extendibility ways of the tools. We can choose any of the paradigms for all these combi-

nations. If both of the tools are extendable through source code availability then we

should choose the first paradigm. If none of the tools' source code is available we should

choose the second or the third paradigm. For the rest of the combinations the choice will

be up to the integrator. The integrator can choose the one that will be easiest according to

him.

For example if the source code for one of the tools is available and it is imple-

mented in Java then we can choose the first paradigm. Then we can separate the tool so

that the GUI of the tool that accepts the data input from the user is run on the client side

and other routines that process the data are run on the server side. We add new modules

that will control the second tool and make the data transformation for the second tool to

the server side. We can distribute the workload between different machines by running

the second tool on another computer. We can extend the second tool to take care of the

data transformation between the tools and not increase the work done by the first tool.

Data Communication

There will be a data exchange between the tools. There are two systems for data

exchange between the tools as described by Noe. These are sharing the same data and

passing the data between the tools.

41

Sharing data: The data sharing mechanism may be files, common objects, or data-

bases. Generally many tools share data by reading from or writing to the same files, using

common objects, or accessing the same databases. Making the data exchange between the

tools using shared data may have some problems, which have to be solved during the de-

sign of the system. These problems may include resource locking, stale data, and timing

problems that can be caused by synchronous data access.

Passing data: The data needed by one tool can be sent from the other tool. The

tool can send the data in one of the three ways: stdin/stdout, message passing, or middle-

ware.

Data Transformation

The data that the tools pass to each other has to be in the same format. If the data

that the tools use is not compatible than we have to pass the data through a transformation

process. Compatibility here corresponds to the format of the data. The data transforma-

tion can be done in different ways. A tool can transform its output to make it compatible

with the input data for the other tool. The tool that needs the input from the other tool can

transform the data while inputting it. Both of the tools might need to transform the data

during input and output. These three choices can be used if the tools can be extended to

transform the data during input and output. If the tools are not extendable the data trans-

formation must be done by an external source.

3.5. Analysis Of The Target Platform

The philosophy behind the Internet is to share information, and provide universal

access through a web browser. The Internet computing model distributes information

42

simply to any user without the complexity of the client-server computing model. With

Internet computing, all information is in one place to be accessed, used, and managed.

We have to make a definition of the Internet platform before starting the integra-

tion methodology. The basic requirement for the Internet platform is "anytime, any-

where" access to the applications. All of the clients must have access to the applications

any time and from anywhere. This requirement will limit the presentation layer of the ap-

plication. The Internet platform generally has a multi-tier architecture. You can see a ge-

neric Internet platform in Figure 3.5. [31]

Clients

Browser

Downloaded
Client Code A

V

Other Applications

A

Presentation
Servers

A
V

Web Server

Dynamic Content
Generation Code

Static Web Pages

Application
Servers

Data
Servers

Application Server

Business Logic

Figure 3.5: A Generic Internet Platform

"The client tier is generally a browser-based HTML client. This can sup-

port the "any time, anywhere" requirement of the Internet platform, which is the

basic requirement for it. Complex GUIs can be supported within the browser by

downloading more client-side application code, relying on browser plug-ins, or

43

relying on browser-specific scripting capabilities. Another way for satisfying

complex GUI requirements is installing the application code on the client com-

puter and running outside the browser. This way we can eliminate the security re-

strictions of the browser. But this is not the desired way because the user has to

install new software on his computer.

The presentation server tier consists of web servers. The web servers can

hold the static HTML based web pages to be downloaded by the clients. The web

server also handles HTTP requests from the clients and dynamically generates

presentation code for execution and display on the client side, typically in the

form of HTML pages. The HTTP requests may require connections to other serv-

ers like application or data servers, or the use of other server-side resources.

The reusable business logic is kept inside the application servers. The

business logic can be reused across a variety of clients and applications. The reus-

able components inside the application server should be easily callable from ex-

ternal servers and clients to facilitate application integration requirements. The

application server layer can also contain specialized reporting and analysis servers

to handle high-end business intelligence requirements.

The data server tier contains databases and other resources that must be in-

tegrated into the system. The data servers should be scalable enough to meet the

intense data storage, manipulation, retrieval, and analysis requirements of Internet

applications." [31]

Security is generally a very big concern in the Internet platform. Clients that are

outside the organization have to access the servers through a firewall. That is, the presen-

44

tation, application, and database servers are behind this firewall. The firewall limits the

access to the servers by allowing the use of only certain protocols (like HTTP, FTP).

Firewalls also limit the visibility of the servers to the outside world. In most cases appli-

cation servers and data servers are not directly visible to most of the clients. Because of

the firewall the clients can access the data servers only through the web servers and ap-

plication servers, or in some cases only through the web servers by using only certain

protocols.

A very important thing in the web-based integration of tools is to decide on the

platform on which you will run the tools. This can be either the client side or the server

side. There are a number of things that will affect this decision.

• The requirements of the tool: If we want to run the tool or tools on the cli-

ent side all the clients have to be able to run the tools. All of the clients must

be able to meet the hardware and software requirements for the tools.

• The number of users: The number of users of the new system will have an

important effect on our decision of choosing the platform. If the number of

users is very high choosing the client computer to run the tool will not be a

good option. Because in this case we will need to install the tool on all of the

client computers. But if the number of users is very small than this may be a

good option. This way we can eliminate the need for design of a new inter-

face.

• Availability of the data stores to the clients side: The data stores that the

tools use have to be available to the client side. In other words the tool must

be able to access its data stores if it is run on the client side. This can be af-

45

fected by the security policies applied to the network. Access to the data

server that the tool uses from some of the clients may be restricted.

• The effects of the communication protocols between the clients and the

server: There may be some restrictions on the communication protocols be-

tween the client and the server. Only some specific protocols might be avail-

able (like HTTP and/or FTP). We might need to wrap the communication pro-

tocol of the tool within one of the available protocols and this might be inap-

plicable for our tools.

If we choose the client side to run one or both of the tools we have two options:

We can run the tools within a browser or as separate applications. In order to run the tool

within the browser the tool must be a Java applet or an ActiveX component. The tool that

will run in the browser will be downloaded from the server within an HTML page, so we

won't explicitly need to install the tool on the client computer. If we want to run the tool

as a separate application we have to install it on every client computer.

If we want to run the tools on the server side we will need a means of access to

the tool or tools from the client. We can do this by means of an interface application. This

interface application will have a server side component and a client side component. The

client side component will get the input necessary for both of the tools and send them to

the server side component. The client side will also supply the Graphical User Interface if

a GUI is needed. The server side component will get the input from the client side com-

ponent and run the tools with this input. Then it will get the output from the tools and

sent it back to the client.

46

As part of the initial analysis of the target platform we first have to list the follow-

ing resources and then make an analysis of them:

• Available web servers

• Firewalls and/or proxy servers

• Application servers

The analysis of the available web servers will include their properties, capabili-

ties, requirements, and supported platforms. We have to gain information about the server

side technologies supported by the web server. The analysis of the firewall will include

the general architecture of the system, and the protocols that are let through the firewall.

Then we are going to analyze the application servers available if any. This analysis will

include the architecture of the application server and the supported technologies.

The results of this analysis will help us for the design and architecture of our sys-

tem, and choice of target platform for running the tools.

3.6. Design of the System

In the design phase we will create a system design that will be based on our

choice of integration method. Basically we can choose one of the three integration para-

digms that were described above. But we can create different designs from these para-

digms. The design will again depend on the results of the analyses of the tools and the

analysis of the target platform. Having the choice of integration paradigm and some ini-

tial design decisions at hand we first have to do some detailed analysis of the tools. We

will do the detailed analysis according to the choice of integration paradigm. Generally

we will do a two level system design:

• Design a front end (Presentation level)

47

• Design a back end (Integration logic level)

The front end will basically include the user interface of the system, which will be

a GUI on the client side or an HTML based interface. The back end will be on the server

side and will include the actual integration logic of our system. The integration method

will be our starting point while doing the design of the system. After doing a more de-

tailed analysis on some parts of the system according to the integration paradigm we will

design the front and the back end of our system.

The first paradigm

If we have chosen the first paradigm as the integration method, the design of the

front end and the back end of the system will depend on the extendibility way of the tool

that we are going to extend.

We have different options for choosing the platform on which we are going to run

this tool. We can run the first tool completely on the client side, completely on the server

side, or distribute the tool between the client and the server. This system design can be

represented as seen in Figure 3.6.

Client

Front end

Tool A

I Web Server Application

J Tool B

Database

f~~~ ~~-^
Back end W-i 1 ► ToolB

data store

/Control and data conA
m munication between)
| \. the tools S*

fd ^>

Tool A
data store

Figure 3.6: System design using the first paradigm and Tool A as front end.

48

We can run the tool on the client side only if it is possible to migrate it to the

Internet platform. We can do this by running the tool within the browser. This is possible

if the tool is programmed in the Java programming language as an applet or programmed

as ActiveX components. Since not all browsers have support for ActiveX components we

should choose the client side for running the tool only if the tool is implemented as a Java

applet. But in this case another issue is the location of the data source and size of the data

that the tool accesses. The database server must be visible to the client so that the tool can

access the data source, and the size of the data passed back and forth between the tool and

the data source shouldn't be very large because of the bandwidth restrictions of the con-

nection between the client and the server. We can also route the communication between

the tool and the data source through the web server. We can do this by wrapping the

communication protocol between the tool and the data source in HTTP protocol and add-

ing some functions to the web server that can pass the data request to the database server

and pass the responses to the client. At this point we have to make a detailed analysis of

the tool in order to be able to make decisions and design the system. We can do this from

the following aspects:

• Analyses of the data flow within the tool. We can do this by using classi-

cal data flow diagrams (DFD)

• Analysis of the input and the output mechanisms

• Analysis of the database access

• Analysis of the source code according to the security restrictions of the in-

tegrated system under consideration

49

Another option may be distributing the functions of the tool between the client computer

and the server. But we have to figure this out according to the analysis of the source code

of the tool. We can run the user interface of the tool on the client computer and other

functions and integration logic on the server computer. For example it is desirable that

the data input and data validation functions are on the client side and data processing

functions are on the server side. We have to add new methods that will run on the server

side and make the necessary data transformations for the data exchange between the

tools. We also have to add necessary methods that will invoke the second tool with the

data input, get the output of the second tool, and send the output to the client. The system

design will look as in Figure 3.7 when the first paradigm is used and the functions of the

extended tool are distributed between the client and the server. Here the user interface on

the client side is the front end, and other functions that reside on the server side are the

back end of the system.

Client

Front end

Web Server Application Database

ToolB
data store

Tool A
data store

Figure 3.7: System design using the first paradigm and Tool A is distributed between the

client and the server.

50

If the source code of the tool is not available or after making a detailed analysis of

the source code we decide that it is impossible to run it on the client or distribute and run

it on the client and the server computers then our system design will look as in Figure

3.8. In this case the front end and the back end of the system must be designed from

scratch. While designing these parts of the system we have to consider the target plat-

form. We have to design our system according to the available resources or we have to be

able to supply the requirements of the system that we have designed. The front end of this

system can be a GUI, which can be done as an applet or ActiveX component, or form-

based HTML pages. While designing the front end of the system it will be good if we try

to make the look and feel of the user interface as the original user interface of the tool.

The back end of the system will be on the web server and get the data input from the cli-

ent side and pass the data to the tool. If the tool has a GUI and data is normally input

through this GUI we can design an applet on the client side and make it look like the

original GUI. Then we have to design the back end of the system, which will be on the

Client Web Server Application Database

Figure 3.8: System design using the first paradigm with a newly designed front and back

end.

51

server side. This back end of the system will take the data input from the front end of the

system and pass it to the tool, and get the results and output from the tool and pass them

to the front end of the system.

The second paradigm

If we are doing a design for the second paradigm then we must design a front and

a back end for our system. Our system design will be as seen in Figure 3.9. The front end

of the system will be the same as described above for the first paradigm. The back end of

the system will include the functions that will get the input data from the front and pass it

to the back end and get the output from the tools and pass them to the front end. The inte-

gration logic will also be on the back end. It will include the data communication and

data transformation functions between the tools.

Client Web Server Application Database

Figure 3.9: System design using the second paradigm.

The third paradigm

If we are designing a system for the third paradigm our back end design will be

different. The back end of our system will include the data communication routines be-

tween the front end of the system and the tools. It will get the data input from the front

end and pass it to the tools, and get the output from the tools and pass it to the front end.

52

Since there isn't any need to do data transformation there aren't any data transformation

functions on the back end system. The system design for the third paradigm will be as

seen in Figure 3.10. The front end of this design will be the same as the one for the sec-

ond paradigm. It will get the data input from the user and send the data to the back end of

the system.

Client Web Server Application Database

Figure 3.10: System design using the third paradigm.

3.7. Summary

In this chapter a methodology for integrating tools on a web-based environment

developed as part of this research effort is presented. Based on the definition of a web-

based environment the integration of the tools is can be done in five steps. These five

steps are: 1. Tool analysis, 2. Choice of Integration Method, 3. Target Platform Analysis,

4. System Design, and 5. Implementation. An example application of this methodology is

presented in the next chapter.

53

4. Application of Methodology

In Chapter 3 a methodology is defined to integrate tools in a web-based environ-

ment. In this chapter an application of this methodology will be demonstrated on some

existing tools in AFTT. These tools are part of the Edplan creation and administration sys-

tem of AFTT. The first tool is the Edplan administration tool. This tool was created by

Jason Gunsch as a summer project. This tool basically helps the students to create their

Edplans and save them in a database. The tool also has a part for the database administra-

tor to enter and edit the information about the courses, course requirements, advisors, and

students. The second tool is the Edplan checker tool. This tool checks the Edplans created

by the students and reports if they comply with the requirements of AFTT, and if the stu-

dents meet the prerequisites and co-requisites of the courses they want to take. Our pur-

pose is to integrate these tools so that the students can create the Edplan, check it, and

save it on a web-based environment.

4.1. Analysis Of The Tools

In this step we characterize the tools first individually, and then as a pair. The first

tool that we are going to integrate, the Edplan Administrator, is written in the Java pro-

gramming language and its source code is available. We characterize the extendibility of

this tool as "source code available." This tool does not supply any other way of extendi-

bility. After making a low level analysis of the source code of the tool the following

properties of the tool were discovered:

• The tool is designed as Java applets. There are two Java applets; one of

them is for the database administrator and the advisors to edit and admin-

54

ister the course registration database and the other is for the students to

create their Edplans and save them.

• The tool has a GUI and this GUI is programmed using Java's AWT (Ab-

stract Window Toolkit). All the control of the tool and the user data input

to the tool is through the GUI.

• It does not supply any other extendibility method. The only way of

extending the tool is to modify the source code

• It uses the file input/output mechanism by using a database. The tool also

accepts some standard files as data input and writes this input to some of

the tables of the database.

The first level DFDs of the database administration applet and course registration

applet are shown in Figure 4.1 and Figure 4.2. In both of the applets first the user-id and

password are entered by the user and verified by the tool from the related table or tables

in the database and then the user is allowed to use the tool or not according to the result

of verification.

/ Verify UserlD V,
1 and Password f

1

/ Database \
Administrator

V Applet j

2V—^X

Database tables

Administrators Advisors

Figure 4.1: First level DFD of database administration applet.

55

Students

Database
tables

Figure 4.2: First level DFD of course registration applet.

The Edplan administration tool uses the JDBC API for database access. The tool

uses the thick JDBC driver supplied by Oracle, which is a type-2 driver. Since this driver

uses local native libraries to communicate directly to the database it cannot be used

within an applet.

The other tool to be integrated is the Edplan checker tool. The purpose of this tool

is to check whether the Edplans of the students comply with the requirements or not. This

tool is written in the Prolog programming language and the source code is available. This

tool is run in a Prolog compiler named SWI-Prolog [10]. Since the Edplan checker tool is

run in the SWI-Prolog environment we have to analyze both the tool and SWI-Prolog

compiler.

The SWI-Prolog is a freely distributed, publicly available Prolog compiler. It has

versions that run on all of the major platforms including Unix, Windows, and Linux.

SWI-Prolog is normally operated as an interactive application simply by starting the pro-

gram. Then SWI-Prolog enters interactive mode. Here the user can load the Prolog files

and run them. SWI-Prolog also has command line parameters to run Prolog programs

56

without entering the interactive mode. Normally the Edplan checker tool is run in the in-

teractive mode.

Running the Edplan checker program is not an easy process. The student first has

to run the SWI-Prolog interpreter. Then he/she has to load the starter program, which

then loads the main part of the program. The tool runs in an interactive mode after this

point. The student has to have the Edplan information ready as a specially formatted text

file. Then the student loads this input file. If there isn't any typing error in the input file

the file loads correctly. Then the student gives the command to check the Edplan. If the

Edplan of the student meets the requirements in the Edplan checker tool's database the

student can save the output of the Edplan checker. The first level DFD of the Edplan

checker tool can be seen in Figure 4.3.

edplan input file

Output file

Requirements

Catalog

Figure 4.3: First level DFD of Edplan Checker tool.

The source code of the Edplan checker tool is available. So, it can be extended by

modifying the code or adding new code to it. Then we can say that the Edplan checker

tool is extendable through source code availability. There are two parts of the source

code. The first part loads the main part of the program. This first part is just used as a

starter program. The tool does not supply a way of extendibility other than modifying the

57

code. Now we have to do an analysis of the source code of the program. The starter pro-

gram file is "edplan95.pl". This part of the program just loads the main program file

"main.pl" and gives information to the user to type "begin" and start the program. After

loading the files and the database and giving some initial information to the user the tool

enters to the interactive mode. In the interactive mode the tool waits for commands from

the user and runs according to the commands given by the user.

The tool uses files for input and output as explained above. Then the input/output

mechanism of the tool can be characterized as "file input/output." The program loads the

student's Edplan data as a formatted text file. The catalog data about the courses given

and the requirements data about these courses are loaded from text files. After the student

loads and checks the Edplan he/she can save the output of the Edplan checker as an out-

put file. This output file has the same name as the input file. But the program gives an

extension of ".out" to the output file. The Unix version of the SWI-Prolog compiler uses

standard input and standard output when it is in interactive mode. So, when SWI-Prolog

is run on a Unix platform it also uses the standard I/O. Then we can also characterize the

I/O mechanism of the tool as "standard input/output."

As the last step of this initial tool analysis we have to characterize the tools as a

pair. When we consider the tools as a pair we are going to characterize the tools as "both

extendable". The results of the tool analysis can be seen in Table 4.1.

58

Tool Extendibility Input/Output User interface
Edplan
Administration Tool

Source
code Both

extendable

File I/O
GUI GUI

Edplan Checker Tool Source
code

File I/O
Standard I/O

Interactive
interface

Table 4.1: Tool Characteristics Summary

4.2. Choice Of Integration Method

While deciding on the integration method that we are going to use for this integra-

tion effort we are going to use the results of the tool analysis as defined in the methodol-

ogy. As we can see in Table 4.1, both of the tools are extendable through source code and

they don't supply ariy other extendibility method. In such a case we can choose any of the

three paradigms. Our choice of integration method must be the one that is easiest to im-

plement and the one that best fits our system. One of the tools that we are trying to inte-

grate is a Java applet and the other is a Prolog program. The Edplan administration tool is

written in the Java programming language, which is the programming language of the

Internet. This tool has lots of flexibility. It can run on any operating system or any hard-

ware platform. Because the tool is designed as a Java applet it can be run on the client

side within the browser. But some components of the tool can be run on the server side

and the tool can communicate with them over the Internet using the HTTP protocol.

Since the source code is available we can extend the tool for adding new functionality to

ease the integration process. Because this tool is more compatible with the Internet plat-

form than the Edplan checker tool, we will choose the first paradigm for the integrated

system. We will extend the Edplan administration tool to include the integration func-

59

tions and control the Edplan checker tool from the Edplan administration tool. When we

use the first paradigm the integrated system will be as in Figure 4.4.

Edplan administration tool

Edplan checker
input file

Output file

Figure 4.4: System design using the first paradigm.

4.3. Analysis Of The Target Platform

We are going to list and analyze the available web servers, firewalls and proxy

servers, and the application servers in this part. There are two main points of view for the

target platform; the servers available and visible inside of the organization and the servers

that are visible outside of the organization. We have lots of different options for serving

inside of the organization. We will consider three different web servers for the purpose of

this integration effort. These are Sun's Java Web Server Version 2.0 [11], Apache

Group's Tomcat, which is part of Jakarta project [12], and Apache Group's Apache Web

Server [13]. These three web servers have different properties. We will list the properties

of each of them.

60

Sun's JavaWebServer is a crossplatform web server, which can be installed and

run on any JDK 1.1 or Java™ 2 compatible platform. It is a pure Java web server. It is

based on the following standards; Java™ 2 platform, Java Servlet API 2.1, Java Server

Pages 1.0, HyperText Transfer Protocol (HTTP) 1.1, Secure Socket Layer (SSL) 2.0, and

Common Gateway Interface (CGI) 1.1. Even though it has support for all platforms that

support JDK 1.1.7, platforms other than Solaris and Windows are untested and therefore

unsupported. It has an applet-based, easy to use administration utility. The web server can

be monitored or configured from any JDK 1.1 compliant web browser by using this ad-

ministration utility. This administration applet simplifies the administration tasks. There

is a 30-day trial version of JavaWebServer 2.0 that can be downloaded from Sun's web

site [14]. Since it is easy to install and easy to administer it can be used for test purposes.

But a licensed version has to be bought in order to use this product for deployment of the

system.

Tomcat is another web server, which is a combined JSP 1.1 and Servlet 2.2 refer-

ence implementation, being developed under the Apache web server . Tomcat can be run

together with any web server. It gives the ability to process JSP and servlets to the web

server. Because it has a lightweight web server within itself, it can also be used as a

standalone web server without using any other web servers [12]. Tomcat is very useful

for developing JSP and servlets. Because it can be run within the VisualAge for Java de-

velopment environment we can run and debug servlet and JSP code [15]. This is a very

important property for this development environment, because there aren't many devel-

opment environments that let the developer debug servlet and JSP code. Tomcat is a very

good environment for the development, debug, test and presentation of a developed sys-

61

tem. But Tomcat alone is not appropriate for deployment. It can be used together with the

Apache web server, which is one of the most widely used web servers. Apache web

server has support for many platforms including almost all major Unix platforms, Linux,

and Windows NT.

The main and official web server of AF1T, which is visible outside of AFIT to the

Internet, is a Microsoft HS. This web server has support for Microsoft technologies like

ASP, ADO, and ActiveX components. But it does not have support for server side Java

technologies like JSP and servlets, at least for now.

For the purpose of this project there isn't any need for an application server, and

there isn't one available. AFIT does not have a proxy server. But there is a proxy server

and firewall for Wright Patterson AFB, which is out of AFJT. Since this project is not

intended to be served outside AFIT, there is no need to worry about this proxy server and

the firewall.

Because it is very easy to maintain and it allows debugging and tracing of the

servlet and JSP code during development time, we will use the Tomcat web server for

development and presentation of this project.

4.4. System Design

In the second step of the methodology we have chosen the first paradigm for the

design of our system. Since the Edplan administration tool is a Java applet we can run

this tool on the client side. We can run the Edplan checker tool on the server side. This

can be the same computer with the web server or it can be another computer on the net-

work. The design of the system can be seen in Figure 4.5. This system design is like the

one shown in Figure 3.6.

62

Client Web/Application Server Database
Server

Web Browser

HTML

Oracle Database

Figure 4.5: Design of the integrated system using the first paradigm and the first tool on the

client side.

According to the methodology defined in Chapter 3 we have to make a detailed

analysis of the source code of the tool here. This analysis will include the following steps:

• Analysis of the data flow within the tool

• Analysis of the input and output mechanisms

• Analysis of the database

• Analysis of the source code according to the security restrictions

Analysis of the data flow: The tool has two main parts, each designed as a sepa-

rate applet. One of them is for the database administrator to maintain the database

(DB Admin Java), and the other part is for the students to register for the courses (regis-

ter.java). Both of these parts are AWT based Java applets. We are going to make the

63

analysis of these parts separately. We will start with the analysis of the database adminis-

trator part. The user

■'5 DBAdmin - Microsoft internet EKPIO

j ' File Edit View Favorites Toob Help

^6«k - -* ■ j£ lj] ^ j -^Search JJFava,,« »\

j Ad/fc« |«J] Nip A'localhc-t 8C180/'»dcfen/TiBAdmin WrrJ _^j ^Go | Irk* "j

Database Administration r

H
Edit Administrator list

Edit Advisor list

Generate a new database (safe)

Edit Course list

Edit Requirements Structure;

Edit Student Accounts :■; ■

Open Course Requests Manager

Start JAG session

* Done i I;- ■'■> \
■'•.' ■■ ■:■ 1

\:.1

HÜ Dor» I Locd irtiarwl

Figure 4.6: Main database administration page

first has to logon to the system by entering his/her user id and password through the

logon window. This applet shows different menu buttons according to the person who

uses it. If the user is a database administrator then the applet will display a menu as

shown in Figure 4.6. If the user is not a database administrator, but an advisor then a re-

stricted version of this menu will be displayed.

After the validation of the user id and password by accessing to the database the

main administration menu is displayed as shown in Figure 4.6. By using this main ad-

ministration menu the user can get into the several different modules of the tool. These

64

modules are: Administrator list editing, Advisor list editing, Requirement structure edit-

ing, Course list editing, Student account editing, Request manager, new database genera-

tion, and Edplan administration modules. Each of the modules runs in a separate window.

Each of the buttons on the main database administration applet opens a new window

frame. Within each module the tool accesses the database many times and the data is

passed back and forth between the database server and the client.

The registration applet is for the students. The students use this applet to register

for the courses. The first time a student uses this tool he/she enters data about him-

self/herself by choosing the "New student" button from the Logon window. Then the

main menu is displayed as shown in Figure 4.7. The student can modify his/her account

information and register for courses by using this menu.

'3 legister - Microsoft Internet Explorer

File £dit View Favorites lools Help

Addrew |£] h»p7/localho:t 8080,'^J .f>Go : Links'^

Course
Registration

Edit Student Account Information

| Register for Courses

Close

m

■r j

Done llji Local Mranet R

Figure 4.7: Course registration applet window

65

Analysis of the input/output mechanisms: The tool uses a file input/output mecha-

nism considering the database access as a file input/output. The user data input to the tool

is through the GUI. The tool also uses some files for the data input to some of the tables

in order to make the data input faster. The tool also uses the GUI as the output mecha-

nism. So we are going to characterize the tool's input/output as file and GUI input/output

mechanism.

Analysis of the database access: As explained above, the tool uses the Oracle

DBMS for data storage. The tool uses the JDBC API for accessing the database. It uses

the thin JDBC driver provided by Oracle. This driver is a Type 4 driver [16]. It makes

direct socket connections to the database server in order to access the database. The tool

lets the database administrator create twelve initial tables on the first run of the tool by

pressing the "generate database" button. The schema definitions of these tables are in

Appendix A. The tool creates several different tables according to the requirement struc-

ture created within the tool. These tables keep the data about the courses and the require-

ment structure about the courses.

Analysis of the source code according to the security restrictions: The tool is

written using Java applets using the AWT of the Java programming language as ex-

plained above. An applet is generally created to run within a browser window. To be able

to run an applet within the browser the applet must conform to some security rules and

restrictions. These rules are explained in Chapter 2. The Edplan administration tool

breaks these rules at several places within the code. The following security problems

within the tool prevent it from running within a browser. [6]

66

1. The tool uses a Type 4 JDBC driver to access Oracle DBMS. This JDBC

driver makes socket connections to the server to make the communication

possible between the client and the server. But the security restrictions prevent

an applet from making a socket connection to a server other than the one it is

loaded from. In order to overcome this restriction we either have to change the

JDBC driver used to access the database or run the web server on the same

computer with the database server.

2. There are several places within the source code of the tool that the

System, exit () command is used. This command closes the Java virtual

machine (JDV) that runs the application. The use of this command is re-

stricted within an applet because this command tries to shut down the JVM of

the browser when used. This is not allowed for an applet that runs within a

browser and causes a security exception.

3. There some portions of the source code, in which the tool tries to access the

local file system to load some files. Applets are not allowed to read from or

write to the local file system. These portions of the code will also cause secu-

rity exceptions.

In order to solve the database connection problem we have to use a type-3 JDBC

driver, which will use some type of middle tier to communicate with the database server.

We use a type-3 JDBC driver distributed with a book about Java servlets [17]. This driver

uses Java servlets as the middle tier. This JDBC API has two parts. One part is on the cli-

ent side and the other part is on the server side. The part on the client side is a standard

JDBC API. But this part sends the database requests to the part on the web server instead

67

of sending them directly to the database server. While sending the JDBC requests to the

web server this driver wraps the requests in the HTTP protocol. There are Java servlets

on the web server that get the JDBC requests in the form of HTTP requests from the cli-

ent, change them to JDBC calls to the database and send them to the database server.

While doing this these servlets use another JDBC driver. This JDBC driver can be any

driver that can be specified by the system designer. In our case the servlets use the thin

JDBC driver supplied by Oracle that was originally used by the Edplan administrator

tool. These servlets get the results from the database and pass them to the client using the

HTTP protocol.

To get rid of the second security problem we have to remove the

System, exit () commands from the code. We have to change these lines so that the

tool opens a message box saying that something wrong has happened and then either con-

tinue to run the tool or load an HTML page from the web server.

In order to overcome the third security problem we either need to remove these li-

nes of code or change the tool so that it accesses the server resources to load or save the

file. To do this we have to add some server side components that will do this on the web

server. These components will be some Java servlets. These servlets will get the file re-

quest from the client, read the file from the server file system, and then send the file to

the client using the HTTP protocol.

We will need to design the data communication between the tools. As we see in

Table 4.1 both of the tools use File I/O mechanism. According to Noe we can use a

shared data communication system in this case. Edplan Administration Tool writes its

output to a file and we run the Edplan Checker tool so that it loads this file and writes its

68

output to another file, which can be read by the first tool. The input file has to be in

proper format for the second tool. Since both of the tools are extendable we can add the

data transformation functions in any of the tools. Based on familiarity with the Java pro-

gramming language the Edplan Administration tool is extended to make the data trans-

formation.

Another thing that we have to design is the component that will control the Ed-

plan checker tool. As we have found out in the first level analysis of the tools the Edplan

checker tool has an interactive interface and it uses file VO and the Unix and DOS ver-

sions use both standard VO and file I/O. We have two options here for the control

mechanism of the Edplan checker tool. The SWI-Prolog compiler can run the Prolog pro-

grams without entering the interactive mode by giving a top-level goal with command

line parameters. If we can modify the source code of the Edplan checker tool so that it

can be run in this way we can add a server side component to the Edplan administration

tool, which will run the Edplan checker tool with a system command and with necessary

command line parameters. The other option for the control of the Edplan checker tool is

to use the standard input and standard output to control the Edplan checker tool.

First I tried to modify the Edplan checker tool's code in order to be able to run it

without entering the interactive mode. But I couldn't successfully do this. I knew that this

could be done. But, because of the unfamiliarity with the Prolog programming language I

couldn't modify the code successfully. The second option was to use the standard in-

put/output to run the Edplan checker tool. I added a server side component to the Edplan

administrator tool. This server side component is a Java servlet that runs the Edplan

checker, sends the necessary commands to the tool to load the input file and save the out-

69

put file using the standard input, and pipes the output of the SWI-Prolog compiler from

the standard output to the client. This way the user can interact with the Edplan checker

tool remotely and run it with the Edplan checker input file created by the Edplan admini-

stration tool.

4.5. Summary

In this Chapter application of the methodology defined in previous Chapter is

demonstrated through integration of the Edplan creation and administration tool (CLAS-

PICS) and the Edplan checker tool. The two tools are integrated to run in a web-based

environment. The Edplan creation and administration tool can be downloaded from the

web server and run within a web browser. The Edplan checker tool can be accessed and

used from the Edplan creation and administration tool in the new system.

70

5. Results and Conclusion

This research briefly examines web-based applications and the trend on develop-

ment of web-based applications, "web-enabling" existing applications and the integration

of tools and applications in web-based environments. Integrating old tools and applica-

tions into the web-based environment instead of re-writing them is an easier and less

costly way. The primary objective of this research was to develop a methodology for in-

tegrating tools in a web-based environment. This objective was accomplished through the

development of a generic methodology for integrating existing tools in a web-based envi-

ronment.

After doing a literature review and research on web technologies currently used in

developing web-based applications, it was determined that the technology in this realm is

developing very rapidly and new technologies are being introduced very frequently.

There is an increasing trend towards Java technology, which has been proven to be the

programming language of the Internet and web-based applications. Java based technolo-

gies are also improving very rapidly. The rest of this chapter summarizes the work ac-

complished during this research effort. The results of the sample application of the meth-

odology are discussed and some recommendations for future work are given.

5.1. Results

The web-based tool integration methodology developed in this thesis research of-

fers a step-by-step approach to web-based tool integration. The two tools that are going to

be integrated share some information. The information that the tools use may not be in

the same format. But it must be semantically meaningful to both tools. The methodology

assists the integrator in analyzing the tools separately and as a pair. The results of the

71

analysis will help the integrator during the integration process and in designing the result-

ing integrated system. According to the results of this first level analysis the tools will be

characterized with respect to their input/output mechanisms and extendibility. Using the

results of this first level analysis and tool characterization an integration method is cho-

sen. There are three integration paradigms outlined in Chapter 3. Choice of an integration

paradigm is done according to the extendibility class of the tool pair. The data communi-

cation and data transformation needs between the tools are also clarified while choosing

the integration method. Then we analyze the target platform according to the available

web servers, firewalls and proxy servers, and application servers. Then the system design

is done according to the integration method we have chosen.

This methodology is used to integrate two tools that are used in the course regis-

tration process at AFTT. These tools are the Edplan creation and administration tool de-

veloped by Jason Gunsch and the Edplan checker tool developed by Dr. Gunsch. The Ed-

plan creation and administration tool is a tool that helps students while creating their Ed-

plans and saves the Edplans in a relational database. The Edplan Checker tool is used by

the students to check their Edplans to determine if they comply with the requirements or

not. The purpose of the integration is to integrate the tools in a web-based environment in

order to web-enable the tools. As part of the integration effort the Edplan creation and

administration tool was modified and extended. The tool was modified to make it possi-

ble to run it within a browser without causing any security exceptions and to be able to

communicate with the database server without any restrictions. It is also extended to

make it possible to control the Edplan checker tool from the Edplan creation and admini-

stration tool. This way the students can run the Edplan creation and administration tool

72

and the Edplan checker tool at the same time without switching the environments or

without any need to learn the input file syntax for the Edplan checker tool. The Edplan

administration tool can now be run within a browser by downloading it from a web server

and it can communicate with the database server without any problems. The integrated

system is designed so that the Edplan creation and administration tool has some parts on

the web server that will control the Edplan checker tool and make any data transforma-

tion between the tools. The control integration component of the Edplan creation and ad-

ministration tool can now save the input file for the Edplan Checker tool to the file sys-

tem of the server, run the Edplan checker tool with the saved input file, read the output of

the Edplan Checker tool, and send them to the client to be displayed to the user.

5.2. Conclusions

The primary objective of this thesis research was to develop a methodology that

would provide a step-by-step methodology for integrating tools in a web-based environ-

ment. The developed methodology has demonstrated to be appropriate and good enough

for integrating tools in a web-based environment. The two tools are integrated effectively

in a web-based environment to form a web-based system. The system design is developed

with the help of the methodology. The methodology assists the integrator during the de-

sign of the integrated system. But it does not deal with the implementation of the de-

signed system. Implementation is left to the integrator. The integrator has to find an ap-

propriate implementation method according his/her knowledge and experience.

5.3. Recommendations For Future Work

The methodology developed during this thesis research accomplished quite a bit

for integration of tools in a web-based environment. It also helped in the design of an in-

73

tegrated system for AFIT Edplan administration. Both the methodology and the designed

system can be improved in many ways. The rest of this section will give some recom-

mendations for improvement of the methodology and for the AFLT Edplan administration

and course registration system.

5.3.1. Recommendations For The Methodology

The methodology generated can always be extended to reach perfection. It will

need much work to be perfect. As mentioned many times in previous chapters, the tech-

nology in the realm of web-based applications and the Internet is improving rapidly. New

technologies are introduced frequently. These new technologies can be used to improve

the methodology developed here. One of these new technologies is XML (Extensible

Markup Language). XML is a new technology for web applications. It is a W3C (World

Wide Web Consortium) standard that lets a developer build his own tags. XML is a

breakthrough for the data interchange between different organizations or even different

parts of the same organization. XML makes it easy to send structured data across the web

so that nothing gets lost in transaction [18].

The methodology developed in this research does not address integration of the

databases that the tools use. Since the tools use related information, they probably have

the same information in different formats and different database systems. The methodol-

ogy can be extended to address the integration of the databases that the tools use so that

the tools start using the same database. This way information can be centralized, more

consistent, and easy to maintain.

74

5.3.2. Recommendations For The Course Registration System

The course registration system in AFIT can be improved and extended in many

different ways. One of these is integrating the Edplan administration tool with a course-

scheduling tool. Course scheduling is one of the problems in AFIT as in many different

educational organizations. Currently there is some research on developing a course

scheduling system for AFIT. There are also some tools developed previously that do

course scheduling. Integrating these tools with the current system could be a very impor-

tant improvement for the system. Another improvement for the system would be the inte-

gration or synchronization of the current system with the STARS database.

There are some APIs that are used to integrate the Prolog programming language

to other programming languages and environments. These APIs allow the use of the

Prolog programming language within other programming languages. One of these is JPL

[32]. JPL is an API that uses JNI (Java Native Interface) to integrate Prolog and Java. JPL

supports the embedding of a Prolog engine within the Java VM. Another one is AMZI!

Prolog [20]. This one also supplies an API to access Prolog from Java.

An API like this could be used to seamlessly integrate the Edplan checker tool to

the Edplan administration and course registration tool. The Edplan checker tool and the

Edplan administration tool use different databases to store information about the courses.

These databases could also be integrated into one database.

75

Appendix A. Table Definitions
ADMINISTRATORS
Field Name Null? Type

ADMINID
PASSWORD

ADVISORS
Field Name

NOT NULL VARCHAR2(15)
VARCHAR2(32)

Null? Type

ADVISORID
PASSWORD
NAME_LAST
NAME_FIRST
MIDDLENAME
SSN
DEPARTMENT
GRADE

COLLEGEREQUIREMENTSTABLES
Field Name

NOT NULL VARCHAR2(15)
VARCHAR2(32)

NOT NULL VARCHAR2(40)
NOT NULL VARCHAR2(20)

VARCHAR2(20)
CHAR(11)

NOT NULL VARCHAR2(32)
VARCHAR2(15)

Null? Type

NOT NULL VARCHAR2(32) CREQ

COLLEGES
Field Name Null? Type

COLLEGE
CREQTABLE

COURSES
Field Name

NOT NULL VARCHAR2(32)
VARCHAR2(32)

Null? Type

PREFIX
CODENUM
TITLE
DEPT
CDESCR
CREDITMIN
CREDITMAX
PREREQ
COREQ
DESCR
QUARTERS
REPEATABLE

NOT NULL CHAR(4)
NOT NULL CHAR(3)
NOT NULL VARCHAR2(100)

CHAR(3)
NOT NULL VARCHAR2(10)
NOT NULL NUMBER(38)
NOT NULL NUMBER(38)
NOT NULL VARCHAR2(100)
NOT NULL VARCHAR2(100)
NOT NULL VARCHAR2(2000
NOT NULL VARCHAR2(15)
NOT NULL CHAR(l)

OFFICIALCOURSELIST
Field Name Null? Type

NET ID
PREFIX
CODENUM
CREDIT
STATUS
REQUIREMENT
SEQUENCE
QUARTER
VARIABLECREDIT

PERMITTEDSEQUENCESTABLES
Field Name

NOT NULL VARCHAR2(15)
NOT NULL CHAR(4)
NOT NULL CHAR(3)

NUMBER(38)
CHAR(2)
VARCHAR2(32)
VARCHAR2(32)
CHAR(4)
CHAR(l)

Null? Type

NOT NULL VARCHAR2(32) PERSEQTABLE

REQUESTEDCOURSELIST
Field Name Null? Type

76

NET ID
PREFIX
CODENUM
CREDIT
STATUS
REQUIREMENT
SEQUENCE
QUARTER
VARIABLECREDIT

REQUIREMENTSTABLE
Field Name

NOT NULL VARCHAR2U5)
NOT NULL CHAR(4)
NOT NULL CHAR(3)

NUMBER{38)
CHAR{2)
VARCHAR2(32)
VARCHAR2(32)
CHAR(4)
CHAR(l)

Null? Type

NOT NULL VARCHAR2(32) REQUIREMENT

SEQUENCESTABLE
Field Name Null? Type

NOT NULL VARCHAR2(32) SEQUENCE

SPECIALINFO
Field Name Null? Type

TABLENAME
INFORMATION

STUDENTS
Field Name

NOT NULL VARCHAR2(32)
VARCHAR2(2000)

Null? Type

NETID
PASSWORD
NAME_LAST
NAME_FIRST
MIDDLENAME
SSN
INYEAR
DEPARTMENT
ACADEMICSPECIALTYCODE
ADVISORID
NEWREQUEST
GRADE
QUOTA
THESISQUARTER

NOT NULL VARCHAR2(15)
NOT NULL VARCHAR2(32)
NOT NULL VARCHAR2(40)
NOT NULL VARCHAR2(20)

VARCHAR2(20)
NOT NULL CHAR(11)
NOT NULL NUMBER (38)
NOT NULL VARCHAR2(32)
NOT NULL CHAR(4)
NOT NULL VARCHAR2(15)

CHAR(l)
VARCHAR2(15)
VARCHAR2(8)
CHAR(4)

77

Bibliography

[1] Lee, Tien-Chen
A Web-based prototype for AFIT Edplan Administration, Thesis,
Air Force Institute of Technology, Wright-Patterson AFB, OH, Dec 1998
AFIT/GCS/ENG/98D-02

[2] DiPiro, Daniel L.
Methodology for the Analysis and Design of Internet Software Component Provid-
ing Relational Database Access Through the World Wide Web, Thesis
Air Force Institute of Technology, Wright-Patterson AFB, OH, Dec 1998
AFIT/GCS/ENG/98M-01, AD-A340958 DTIC

[3] Noe, Penelope A.
A Structured Approach to Software Tool Integration, Thesis
Air Force Institute of Technology, Wright-Patterson AFB, OH, Dec 1999
AFIT/GCS/ENG/98M-14

[4] http://iserv.iavasoft.com/products/iava-server/servlets/environments.html
JavaSoft Web Site

[5] www.chilisoft.com
ChiliSoft Web Site

[6] Weber, Joseph L.
Using Java 1.2, p. 777, QUE Publishing, 1998

[7] Weiss, Aaron
Introduction to DHTML, 24 August 1998,
http ://www. wdvl .com/Authoring/DHTML/Intro/

[8] Wasserman, Anthony I.
Tool Integration in Software Engineering Environments,
Software Engineering Environment: Proc. International Workshop on Environ-
ments, F.Long, ed., Springer-Verlag, Berlin, 1990

[9] Thomas, Ian and Brian A. Nejmeh.
Definitions of Tool Integration for Environments,
IEEE Software, pp. 29-35, March 1992

[10] http://www.swi.psv.uva.nl/projects/SWI-Prolog/
SWI-Prolog Web Site

78

[11] Java Web Server Version 2.0
Sun Microsystems Web Site
http://www.sun.com/software/iwebserver/index.html

[12] Tomcat Web Server, Jakarta Project,
Apache Software Foundation
http://iakarta.apache.org/tomcat/index.html

[13] Apache Web Server
Apache Software Foundation
http://www.apache.org/httpd.html

[14] Sun Microsystems Web Site
http://www.sun.com

[15] Wosnick, Sheldon
Apache Tomcat Servlet and JavaServer Pages Development with VisualAgefor
Java,
http://www7.software.ibm.com/vad.nsf/Data/Document2389?OpenDocument&p=l
&BCT=3&Footer=l

[16] Oracle 8i Online Documentation

[17] Moss, Karl
Java Servlets Second Edition, McGraw-Hill, 1999

[18] Tidwell, Dough
Tutorial: Introduction to XML,
XML developerWorks Team, Raleigh, NC, July 1999,
http://www.ibm.com/developer/

[19] Bosak,Jon
XML, Java, and the future of the Web, Sun Microsystems, March 1997,
http://metalab.unc.edu/pub/sun-info/standards/xml/why/xmlapps.htm

[20] Amzi! Prolog,
Amzi! Inc. Web Site,
http://www.amzi.com

[21] Microsoft Developer Network Library,
ODBC Programmer's Reference

[22] Graham, Ian S.
HTML Sourcebook, John Wiley & Sons, Inc. 1995

79

[23] Dobson, Rick
From Access to ASP to Web: Understanding Active Server Pages: Part I
http://msdn.microsoft.com/librarv/periodic/period98/html/OVBAD0298asp.htm

[24] Garrisjohn
Scripting with ASP, PC Magazine

[25] Lam, John
Active Server Pages, PC Magazine, September 21, 1998

[26] Karpinski, Richard
Dynamic Java Pages, MS-Style, Internetweek, June 29, 1998, Issue 721

[27] Sol, Selena
Web Programming 101 Part Two: Client Side Scripting
WEB Developer's Virtual Library
http://www.wdvl.com/Authoring/Scripting/WebWare/Client/index.html

[28] Client Side JavaScript Guide, Chapter 1, JavaScript Overview
Netscape Communications Corporation 1999
http://developer.netscape.com/docs/manuals/is/client/isguide/intro.htm

[29] Mohseni, Piroz
Start serving Java Server Pages: Introduction, Gamelan, Tech Workshop
http://www.gamelan.com/iournal/techworkshop/092199 jspl .html

[30] Hamilton, Graham; Cattell, Rick; Fisher, Maydene
JDBC Database Access with Java, Addison Wesley, January 1998

[31] Building Java Applcations for the Oracle Internet Platform With Oracle JDevel-
oper, An Oracle White Paper, October 1999
http://technet.oracle.com/products/idev/htdocs/ids oip.htm

[32] Dushin,Fred
JPL: A Java interface to Prolog
http://blackcat.cat.syr.edu/~fadushin/software/jpl/

80

Vita

Musa Serdar ARSLAN was born in Ürgüp/Nevsehir, a small town in central Ana-

tolia, on 23rd of June 1973 and he grew up there. After graduating from Nevsehir

Anatolian High School he went to Maltepe Military High School, where his military life

started in August 1988. He graduated from high school in July 1991. Then he started his

education in the Air Foce Academy, Istanbul. He graduated from the Air Force Academy

with a B.S. in Computer Engineering as a 2nd Liutenant on 30 August 1995. Then he was

assigned to the Air Technical Schools Command Izmir, Turkey. After a training of one

and a half years he was assigned to the 4th Main Jet Base, Ankara, Turkey as a communi-

cations officer in November 1996. After working one and a half years in the 4th Main Jet

Base he was assigned to the Air Force Institute of Technology, Wright-Patterson Air

Force Base, Dayton, OH to complete a Master of Science degree in Computer Engineer-

ing. He studied Database Systems. His next assignment is at Turkish Air Force Head-

quarters, Ankara, Turkey.

Permanent Address:

Kavakhönü Mah.
2. Cad. 3. Sok. No: 2/D
50400 Ürgüp/Nevsehir
TURKEY

81

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OM8 control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

REPORT DATE (DD-MM-YYYYJ
21 April 2000

2. REPORT TYPE
Master's Thesis

3. DATES COVERED (From - To)
APR 1999-APR 2000

4. TITLE AND SUBTITLE

A METHODOLOGY FOR INTEGRATING TOOLS
IN A WEB-BASED ENVIRONMENT

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Arslan, Musa Serdar, 1st Lt., TUAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB, OH 45433 - 7303
DSN: 785-2811X4364

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCE/ENG/00J-01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFIT/RAD
Atta: Baker, Randall B.
Air Force Institute of Technology, Registrar Division
Ph: 937/255-3094

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

Professor Thomas C. Hatrum, CIV AFIT/ENG, Ph: 937/255-3636 x 4581

14. ABSTRACT
Web-based technologies are evolving very rapidly. New technologies are introduced very frequently in the realm of the Web and
Internet. This evolution also affects database management systems (DBMSs). Almost all DBMS vendors are making their systems
"Web-enabled". The Internet and the World Wide Web are getting more important and bigger than ever. Because of the increase
in the importance of the Internet and the Web, migrating old applications and tools to a web-based environment is becoming more
important. When migrating old applications or tools to a web-based environment integration of tools becomes an important issue.
In this research, a step-by-step methodology for integrating tools in a web-based environment is developed while trying to integrate
two tools that are part of the AFIT education plan administration and course registration system. These two tools are CLASPICS
(Computerized, Lightweight Assistant for Student Programme Identification and Course Selection) tool and Education plan checker
tool. The methodology proved to be effective for integrating tools in a web-based environment.

15. SUBJECT TERMS
Web-based tool integration methodology, tool integration methodology, web-based environment

16. SECURITY CLASSIFICATION OF:
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF
PAGES

94

19a. NAME OF RESPONSIBLE PERSON
Thomas C. Hartrum, Professor, CIV AFIT/ENG

19b. TELEPHONE NUMBER (Include area code)
937/255-3636 x 4581

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

